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1. Usefulness of calculating Fourier series in the SEM

In this note is presented a method, given nodal values on multi-dimensional nonconforming spectral ele-
ments, for calculating global Fourier-series coefficients. This method is ‘‘exact’’ in the sense that given the
approximation inherent in the spectral-element method (SEM), no additional error is introduced that exceeds
accumulated computer round-off error. The method would be very useful when the SEM provides an adap-
tive-mesh simulation of a physical quantity whose global Fourier spectrum is of scientific interest, e.g., in
dynamically adaptive fluid-dynamics simulations such as [7].

2. Derivation of an exact transform

Suppose we have some functional problem in a spatial domain D :¼ ½�p; p�d (possibly including toroidal
geometry) and use coordinate transformations
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to partition D ¼

SK
k¼1Ek by K elements Ek :¼ ~#kðE0Þ with disjoint interiors. Typically, the SEM approximates

the exact solution uð~xÞ by its piecewise degree-p polynomial representation uhpð~xÞ:
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Table 1
Hierarchy of spectral-element Gauss–Lobatto–Legendre (GLL) quadrature nodes and (piecewise) interpolating-polynomial bases

Nodes Interpolating basis

1 1D element ni 2 [�1, 1] /iðnÞ :¼
Pp

n¼0Ui;nLnðnÞ
1 dD element ~n~ı :¼

Pd
a¼1~e

anıa /~ıð~nÞ :¼
Qd

a¼1/ıa ðnaÞ

K dD elements ~x~ı;k :¼ ~#kð~n~ıÞ /~ı;kð~xÞ :¼ /~ıð~#
�1

k ð~xÞÞ; ~x 2 Ek

0; ~x 62 Ek

(

The orthonormal Legendre polynomial of degree n on [�1, 1] is
ffiffiffiffiffiffiffiffiffiffi
nþ 1

2

q
LnðnÞ, wi is the GLL quadrature weight and

Ui;n � wiLnðniÞ=
Pp

i0¼0wi0Lnðni0 Þ2 is a Legendre coefficient (e.g. [4, (B.3.15)]).
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where ‘‘�’’ implies the SEM truncation error, h denotes the least Ek dimension, ‘‘=’’ implies machine precision,
I :¼ f0; . . . ; pgd indexes the values u~ı;k :¼ uhpð~x~ı;kÞ and other notation is explained in Table 1. In many scientific
applications, such as (magneto-)hydrodynamic turbulence simulation, there are theories to be verified that in-
volve global Fourier-series coefficients û~q at integer wavenumber components qa. Until now, in usual practice
the exact coefficient û~q has been approximated by Md-point trigonometric d-cubature:
uð~xÞ$F û~q :¼ ð2pÞ�d
Z

D

uð~xÞe�i~q�~x dvð~xÞ ð3Þ

¼ M�d
X
~m2M

uð~x~mÞe�i~q�~x~m � E~qu; ð4Þ
where
E~qu �
X

~r2Zdnf~0g

û~qþM~r ð5Þ
(generalizing [3, Theorem 4.7]), dvð~xÞ :¼
Qd

a¼1dxa is the volume differential and M :¼ f1; . . . ;Mgd indexes trig-
onometric nodes xa

~m :¼ ð2ma=M � 1Þp. Note whenever D is adaptively repartitioned there is an additional
computation cost of at least Oð#f~m;~x~m 2 EkgÞ per node ~x~ı;k, to use (2) to provide in (4) the values uhpð~x~mÞ.
There is also a d-cubature error E~quhp that by (5) in general converges no faster than OðM�2Þ, because C1 dis-
continuities of (2) across element boundaries cause jûhp

~q j to decay only as Oðj~qj�2Þ. We discover a more accurate
method by substituting Table 1 formulas into (3) to yield
uhpð~xÞ$F ûhp
~q �

XK

k¼1

X
~ı2I

u~ı;k/̂~ı;k;~q; ð6Þ
where
/̂~ı;k;~q � ð2pÞ�d
Z

Ek

e�i~q�~x/~ıð~#
�1

k ð~xÞÞ dvð~xÞ ¼ð1Þ ð2pÞ�d
Z

E0

e�i~q�~#kð~nÞ/~ıð~nÞjo~#k=o~njdvð~nÞ

¼ ð2pÞ�d
Z

E0

e�i~q�~#kð~nÞ
Yd

a¼1

Xp

n¼0

Uıa;nLnðnaÞ
 !

o~#k=o~n
��� ���dvð~nÞ.
In many applications, especially when uhp-structure rather than domain geometry guides mesh adaption, each

Ek is a d-parallelepiped with center ~ak and d legs 2~h
a

k , so we have an affinity ~#kð~nÞ :¼~ak þ hk

�

�~n, and so
/̂~ı;k;~q ¼ ð2pÞ�d hk

�

����
����e�i~q�~ak

Yd

a¼1

Xp

n¼0

Uıa;n

Z 1

�1

e�i~q�~ha
knLnðnÞdn.
Finally, recalling the classical identity (e.g. [1, Exercise 12.4.9]) for the spherical Bessel function jn(r) of the first
kind,
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Lnðx=pÞ$
F

i�njnðpqÞ; ð7Þ

we obtain
/̂~ı;k;~q ¼ p�d hk

�

����
����e�i~q�~ak

Yd

a¼1

Xp

n¼0

Uıa;ni�njnð~q �~h
a

kÞ. ð8Þ
Note that most expressions in (8) can be precomputed; objects that may vary during a dynamically adaptive
computation, such as~ak or~h

a

k , typically take values from a sparse set, e.g., small integer powers of 2. The com-
putation of (6) now incurs no additional error beyond that of (2). Also note, to generalize to the case p ¼ pa

k is
straightforward.

3. Accuracy of transform for 1D and 2D test cases

Eqs. (6) and (8) were implemented in MatLab� and tested using known results for (3). The most immediate
test is just (7). That (6) verifies (7) can easily be proved to be merely a corollary of the identity
Xp

i¼0

wiLnðniÞLn0 ðniÞ � dn;n0
Xp

i¼0

wiLnðniÞ2 ð9Þ
(e.g. [4, (B.2.18)]), so (6) should not perform better on (7) than MatLab� ‘‘legendre’’ does on (9), which
improves from 11 to 16 digits as p decreases from 18 to 1. This accuracy was verified for (6) applied to (7)
for K = 1, which implies similar performance on any polynomial uð~xÞ in this p-range. The next test was to
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Relative r.m.s. error in (3) for u(x) = sinx, (a) vs. K = 2p/h for p 2 {1, . . . , 16} (dark to light), and (b) vs. p for log2K 2 {0, . . . , 10}
o light).

(Left) uhp (10) over the spatial~x domain, increasing from light to dark; black lines indicate boundaries of K = 640 elements that
ontain (p + 1)2 = 36 GLL nodes~x~ı;k . (Right) pixel image of log10ðjû

hp
~q j=max jûhpjÞ from (6) vs. q1 and q2.



Fig. 3. As in Fig. 2 but for a component of the t = 0 state given by (11), in K = 26 elements.

Fig. 4. As in Fig. 3 but for t = 1.6037/5p and K = 18304 elements.
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put u(x) = sinx. Since this is not a polynomial we expect at best to see algebraic convergence w.r.t. K in a uni-
form meshing ak = (k � 1)h � p, h = 2p/K and exponential convergence w.r.t. p, as verified in Fig. 1. Note
there is no need to test u(x) = sin rx for r > 1 because of scaling.

We conclude by examining three 2D tests with adaptive meshing in the fashion of [5], using MatLab�.
Fig. 2 shows that (6) verifies (3) in the case [6, (19)]
1 No
oversa
uð~xÞ ¼
X
~q2Z2

ei~q� r� �~x
Yd

a¼1

ebajqaj �
Yd

a¼1

sinh ba

cosh ba � cos~ra �~x ; ð10Þ
where
ba ¼ � 2

5
and r

�¼:
r1 r2

�r2 r1

� �
¼

1 2

�2 1

� �
.

As might be expected, the jûhp
~q j peaks found along~qk~r are found to decay as jûhp

~q j / e�0:41j~qj with a 0.3% resid-
ual.1 In Fig. 3 is shown [6, (22)]
te, in this plot and those below the r
�

-operation serves to instigate mesh adaption, but has the consequence of leaving~q apparently
mpled in Z2.
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~uð0;~xÞ :¼ �~r sin~r �~x. ð11Þ

As expected, ûhp

~q almost vanishes for ~q 6¼ �~r; the six visible coefficients besides ûhp
~r are all < 10�5jûhp

~r j, and all
other coefficients are < 10�12jûhp

~r j. Finally, the Burgers equation analytic solution (generalizing [2, (2.5)] to 2D)
evolving from (11) at time t = 0 to t ¼ 1:6037=pj~rj2 is shown in Fig. 4. As expected for the nearly

C0-discontinuous fronts ?~r seen at left, jûhp1
~q j decays slightly faster than Oðj~qj�1Þ but only for wavevectors

~qk~r. That is, only 16 coefficients are > 10�7jûhp
~r j, and they all lie along ~qk~r and decay as j~qj�1:06 with a 0.4%

residual. Evidently, (8) imparts enough accuracy to (6) to enable very accurate global spectral analysis of char-
acteristic features, even for extremely complex nonconforming element distributions as in Fig. 4.
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